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Abstract

In diagnosing a system-level vibration problem, the goals are to identify which component or
components(s) are most responsible for the phenomenon and which changes to the system are most likely to
mitigate the problem. The use of sensitivity analysis in diagnosing system-level vibration phenomena is
examined in this work. It is shown that even if only a small subset of measured system input–output
functions is available, an appropriate analytical parameterization of these functions leads to simple
relationships between the measured data and the desired embedded sensitivity functions. These functions
are then reformulated in terms of transmissibility functions with respect to a single input using a novel
modal deflection chain technique in order to accommodate system-level operating response data in the
absence of input measurements. The embedded sensitivity approach is used to examine two competing
design modifications for reducing a structure-borne noise problem in an exhaust system. The sensitivity
analysis shows that although both modifications mitigate the resonant vibration problem of interest, one of
the modifications is more effective than the other because it introduces less overall change in the forced
response characteristics at other frequencies.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. General

System-level vibration occurs whenever two or more components are assembled into a dynamic
system, which is then made to oscillate freely with initial conditions or through forcing of some
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kind. In bottom-up industries like the automotive industry, in which many components are
designed to avoid system-level resonances at operating excitation frequencies of the engine/
powertrain and road spectra using modal charts, vibration problems still occur when changes to
one or more components are made late in the design cycle or in new models of previous vehicles
by one or more suppliers. These vibration problems can occur anywhere within the system, not
just in the modified components, because any change influences the way all of the components
interact. The noise, vibration, and harshness (NVH) analysis, testing, and design challenges are to
diagnose the problem with limited data and then identify sets of design modifications that are
effective at suppressing the problem of interest, but modest enough to avoid new problems
without making costly prototypes to validate the proposed changes. Moreover, the goal of this
work is to diagnose vibration problems by identifying the parameters to which vibration
phenomena are most sensitive, given only system-level (i.e., input–output or output-only)
measurements and a parameterization of the subsystems in the absence of full system analytical or
numerical (finite element) models.
As an example of a specific scenario in the automotive industry of the general type just

described, consider a change in the static stiffness of the suspension in a standard vehicle model
that is made to produce a sportier new model with stiffer handling. This change in the suspension
subsystem can shift many of the vehicle resonant frequencies of the standard model to undesirable
locations. In this scenario, modifications to other components like the exhaust system and engine/
powertrain mounting must be made in addition to those in the suspension spring rate to avoid
system-level vibration problems. Because an infinite number of design modifications could be
made to the components excluding the suspension, it is challenging for suppliers to decide which
change should be made to their component to most effectively address the problem without access
to models of all subsystems involved. In the absence of shared full system models amongst the
suppliers and the vehicle manufacturers, prototypes are usually fabricated and tested in a costly
and time-consuming iterative redesign process.
The work here experimentally estimates the sensitivity of a given vibration phenomenon to a

component design parameter (mass, damping, stiffness) throughout a frequency range of interest.
FRFs in the full system are first measured and then manipulated to provide the desired sensitivity
functions to perturbations in design parameters over which suppliers generally have some control.
This empirical sensitivity technique is less expensive and faster to implement than the iterative
approach and can work backwards from system-level measurements (hence the term ‘embedded’),
even when input measurements are unavailable if operating data is used, to help identify the most
promising design modifications given limited amounts of input–output data from the system.

1.2. Description of approach

Impedance modelling, sub-structuring, component-mode synthesis and other analytical and
empirical methods are all examples of so-called ‘bottom-up’ techniques for combining subsystem
models to obtain full system models. Force (compatibility) and motion (continuity) constraints
are analytically enforced at the connection degrees-of-freedom (d.o.f.s) in order to implement
these techniques. The technique developed here is the reverse of these techniques in the sense that
system-level measurements are used to quantify the effects of subsystem changes on overall system
vibration characteristics in a ‘top-down’ procedure. In the class of bottom-up methods,
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measurements of subsystem FRFs (e.g., chassis, exhaust, powertrain) are required whereas in the
top-down method discussed here, measurements of full system FRFs or operating responses are
needed. Note, however, that the embedded sensitivity approach is developed using math-based
perturbation, or sensitivity, analysis rather than physics-based force/motion constraints at the
connection d.o.f.s, which often have complicated physics of their own as in the case of engine
mounts, for example.
The work here gives an alternative, more heuristic derivation of the embedded mass, damping

and stiffness sensitivity functions than the one already found in the literature beginning with a
linear single degree-of-freedom (s.d.o.f.) vibrating system. The general formula for embedded
sensitivities in multiple degree-of-freedom (m.d.o.f.) systems is then given and adapted using
transmissibility functions with modal deflection chain conversions for experimental cases, in
which only response data are available. Lastly, a case study involving an exhaust subsystem is
discussed and a five-d.o.f. model is used to demonstrate the transmissibility-based implementation
of the technique. Embedded sensitivity functions for the exhaust subsystem are then calculated
and discussed to demonstrate the advantages of one proposed design modification over another to
remedy a given vibration resonance problem.

1.3. Literature review

Various theoretical and experimental sensitivity analysis techniques for mechanical vibrations
have been discussed in the literature. The concept of receptance sensitivity and a method for its
calculation was discussed by Yoshimura for the case of harmonic excitation [1]. Receptance
sensitivity was further investigated in its application to structural finite element model updating by
Lin and Ewins [2]. In substructuring approaches, which are also referred to as component
receptance sensitivity methods, Chang and Park [3] separated a system into two kinds of
substructures, modification components and non-modification components. The receptance
sensitivity of the whole structure, with respect to the input parameters, was expressed as the
product of the receptance sensitivity of the unmodified structure with respect to the interface
d.o.f.s and that of the interface d.o.f.s with respect to the input parameters on the modified
components.
One method for component mode synthesis was developed by Mace and Shorter [4]. In this

work, the FRFs of each subsystem were expressed in terms of the subsystem modes and the
system modes were expressed in terms of the subsystem modes using component mode synthesis.
A perturbation relationship was then derived to relate small changes in the subsystem modal
properties to changes in the global modal properties.
Many research efforts have also focused on the development and application of eigenvalue and

eigenvector sensitivity analysis. For example, Jahn [5] derived complete formulae for first order
eigenvalue and eigenvector sensitivities for standard eigenvalue problems and then applied them
to improve an approximate set of eigenvalues and eigenvectors. The theory was later extended by
Fox and Kapoor [6] to the case of generalized symmetric eigenvalue problems by considering
changes of physical parameters in the mass and the stiffness matrices.
Though these existing methods have proven to be very useful, they are restricted to cases where

accurate analytical or finite element models are available. In many practical applications where
sensitivities are needed to remedy noise and vibration problems, only limited experimental data
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are available. A general method for using limited amounts of data was developed by Lin and Lim
[7] to estimate both FRF sensitivities and eigenvalue/eigenvector sensitivities from vibration test
data. Their work was based on earlier observations by Vanhonaker [8], Belle and Liu [9], and Lim
and Liew [10]. Design sensitivities were calculated directly from measured data and the
relationship between the FRF sensitivities and eigenvalue and eigenvector sensitivities was
established. A modal acceleration method for the frequency responses and a double-modal
acceleration method for their sensitivities in undamped systems were also derived by Qu [11].
Similar methods for viscously damped systems were derived by Qu and Selvam [12]. The two
methods were based on a hybrid expansion, which involved a power series expansion and modal
superposition, of the flexibility matrix.
The work here contributes to the literature by first providing an alternative more heuristic,

physics-based derivation of embedded sensitivity functions to that in Ref. [7]; second,
reformulating the sensitivity functions in terms of transmissibility functions to accommodate
the use of operating data in which input measurements are not usually available; third, discussing
a practical experimental application of the sensitivity functions for diagnosing a vibration
problem in an exhaust system; and then fourth, implementing the transmissibility-based sensitivity
technique using operating data only. The authors have also extended the use of embedded
sensitivity functions to non-linear systems [13]; however, this work is being presented elsewhere.

2. Embedded sensitivity theory

Embedded sensitivity functions are derived here in terms of FRFs because these are commonly
measured and computed analytically to diagnose noise and vibration problems in many
applications. These sensitivity functions indicate the variation in FRF magnitude and phase with
respect to perturbations in mass, damping, and stiffness parameters. The term ‘embedded’ is used
here to refer to the sensitivity functions because they are explicit functions of the FRFs; thus the
individual mass, damping, and stiffness parameters are not needed to compute the sensitivity
functions in contrast to the requirement for a full analytical or numerical model in typical
parametric design studies.

2.1. S.d.o.f. derivation

To illustrate the derivation of embedded sensitivity functions in terms of FRFs, first consider
the linear time-invariant s.d.o.f. system model in the absence of gyroscopic forces shown in
Fig. 1(a). Although this system is assumed to have equivalent viscous damping, other forms of
linear damping also fit within the framework of this approach. Refer to Ref. [8] for a general
derivation of these sensitivity functions in terms of impedance functions. The linear, second order,
ordinary differential equation of motion associated with this model is given by

M1 .y1 þ C1 ’y1 þ K1y1 ¼ f1ðtÞ; ð1Þ

where M1; C1; and K1 are the mass, equivalent viscous damping, and stiffness parameters; f1 is the
force excitation; and y1 is the displacement response. The desired embedded sensitivity functions
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that will be derived below should describe how the input–output relationship between f1 and y1
varies in both magnitude and phase as M1; C1 or K1 varies.
The corresponding FRF between f1 and y1; which is found by taking the ratio of the Fourier

transform of the harmonic response to that of the excitation, is given by the familiar formula

Y1ðoÞ
F1ðoÞ

¼ H1ðoÞ ¼
1

K1 � o2M1 þ joC1
: ð2Þ

The first parameter for which a sensitivity function will be found is the stiffness, K1: In order to
provide some insight into the nature of this stiffness sensitivity function, plots of the magnitude
and phase of H1ðoÞ as functions of frequency are shown in Fig. 1(b) for three different values of
K1; 1N/m (—), 2N/m (- - -), and 0.50N/m (-.-), with fixed M1 ¼ 1 kg and C1 ¼ 0:1 N s=m: These
plots simply show that increases in K1 cause the undamped natural frequency, on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=M1

p
; to

increase and also cause the low-frequency static stiffness line in the magnitude plot to decrease
according to 1=K1: These three plots also show that stiffness has little effect on the frequency
response for high frequencies where inertia forces dominate.
The sensitivity function of the FRF in Eq. (2) to variations in stiffness, DK1; is found by taking

the partial derivative of H1ðoÞ with respect to K1:

@H1ðoÞ
@K1

¼
�1

ðK1 � o2M1 þ joC1Þ
2
¼ �H2

1 ðoÞ: ð3Þ
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Fig. 1. (a) Schematic of an s.d.o.f. linear system model; (b) magnitude and phase plots of an s.d.o.f. FRF for K1 ¼
1N=m (—), K1 ¼ 2 N=m (- - -), and K1 ¼ 0:5N=m (-.-) with the corresponding embedded sensitivity function, @H1=@K1

(y), for the system stiffness parameter.
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Note that the resulting sensitivity function can be expressed explicitly in terms of the FRF, H1ðoÞ;
and does not require knowledge of any of the system parameters within the model. The only
requirement in taking the partial derivatives was that the parametric form of the FRF in terms of
the parameters be known. Furthermore, this type of parameterization is often known in practical
applications of the type envisioned by this research.
Plots of the magnitude and phase of @H1=@K1 as functions of frequency (y) are shown in

Fig. 1, overlaid with the FRFs for three different values of the stiffness parameter. Note that the
sensitivity function clearly indicates that variations in stiffness do not significantly affect the high-
frequency portion of the FRF in magnitude or in phase. The high sensitivity near the peak of the
FRF is also reflected in the plot, as is the uniform decrease in the low-frequency portion of the
FRF magnitude. The mass and damping sensitivity functions are provided below in Eqs. (4a) and
(4b) and can be interpreted in the same way as the stiffness sensitivity function:

@H1ðoÞ
@C1

¼
�jo

ðK1 � o2M1 þ joC1Þ
2
¼ �joH2

1 ðoÞ;

@H1ðoÞ
@M1

¼
�o2

ðK1 � o2M1 þ joC1Þ
2
¼ o2H2

1 ðoÞ: ð4a;bÞ

2.2. Two-d.o.f. system derivation

The s.d.o.f. example in Section 2.1 was interesting but does not have much practical value for
diagnosing system-level noise and vibration problems because these problems always involve
more than one d.o.f. Fortunately, the technique used above to derive the embedded sensitivity
functions for variations in mass, damping and stiffness in the s.d.o.f. case generalizes to higher
order systems like the two-d.o.f. system model shown in Fig. 2(a). The equations of motion of this
system are given in matrix form by

M1 0

0 M2

" #
.y1

.y2

( )
þ

C1 þ C2 �C2

�C2 C2

" #
’y1

’y2

( )
þ

K1 þ K2 �K2

�K2 K2

" #
y1

y2

( )
¼

f1ðtÞ

f2ðtÞ

( )
; ð5Þ

where the mass, equivalent viscous damping, and stiffness parameters and response and excitation
variables correspond to those shown schematically in Fig. 2. The FRF input–output equation that
relates harmonic excitations at f1ðtÞ and f2ðtÞ to harmonic responses, y1ðtÞ and y2ðtÞ in the steady
state, consistent with this set of linear ordinary differential equations is given by

Y1ðoÞ

Y2ðoÞ

( )
¼

1

DðoÞ
K2 � o2M2 þ joC2 joC2 þ K2

joC2 þ K2 K1 þ K2 � o2M1 þ jo C1 þ C2ð Þ

" #
F1ðoÞ

F2ðoÞ

( )

¼
H11ðoÞ H12ðoÞ

H21ðoÞ H22ðoÞ

" #
F1ðoÞ

F2ðoÞ

( )
; ð6Þ

where DðoÞ ¼ ðK1 þ K2 � o2M1 þ joðC1 þ C2ÞÞ: ðK2 � o2M2 þ joC2Þ � ðjoC2 þ K2Þ
2 is the

characteristic polynomial in terms of the circular frequency (rad/s), o: This characteristic
polynomial can be set equal to zero to compute the modal frequencies.
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The embedded stiffness sensitivity functions of the three unique FRFs for this system, H11ðoÞ;
H12ðoÞ; and H22ðoÞ; to variations in K1 are derived below in Eqs. (7)–(9):

@H11ðoÞ
@K1

¼
�ðK2 � o2M2 þ joC2Þ

2

D2ðoÞ
¼ �H2

11ðoÞ; ð7Þ

@H12ðoÞ
@K1

¼
�ðjoC2 þ K2ÞðK2 � o2M2 þ joC2Þ

D2ðoÞ
¼ �H11ðoÞH12ðoÞ; ð8Þ

@H22ðoÞ
@K1

¼
DðoÞ � ðK1 þ K2 � o2M1 þ joðC1 þ C2ÞÞðK2 � o2M2 þ joC2Þ

D2ðoÞ

¼
�ðjoC2 þ K2Þ

2

D2ðoÞ
¼ �H2

12ðoÞ: ð9Þ

Before proceeding to plot the stiffness sensitivity function results for the two-d.o.f. linear system
model, the form of the functions in Eqs. (7)–(9) should first be noted. All of these embedded
functions are by definition explicit functions of the original set of FRFs, H11ðoÞ; H12ðoÞ; and
H22ðoÞ; thus, the sensitivities of these FRFs to variations in K1 can be calculated directly from the
FRFs without the need for specific parameter values.
Fig. 2(b) shows the magnitudes and phases of the system FRF, H11ðoÞ; for different values of

K1; 1, 2, and 0.50N/m, with fixed M1 ¼ 1 kg; M2 ¼ 1:2 kg; C1 ¼ 0:1 N s=m; C2 ¼ 0:1 N s=m; and
K2 ¼ 0:8 N=m in addition to the embedded stiffness sensitivity, @H11ðoÞ=@K1: The sensitivity
function is seen to exhibit similar characteristics as in the s.d.o.f. example in Fig. 1. For instance,
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Fig. 2. (a) Schematic of a two-d.o.f. linear system model; (b) magnitude and phase plots of two-d.o.f. FRF: H11ðoÞ; for
K1 ¼ 1 N=m (—), K1 ¼ 2 N=m (- - -), and K1 ¼ 0:5 N=m (-.-) with the corresponding embedded sensitivity function,

@H11=@K1 (y), for the system stiffness parameter, K1:
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consider how the magnitude and phase plots for @H11ðoÞ=@K1 in Fig. 2 determine the sensitivity of
H11ðoÞ to variations in K1: Note that near the first peak of H11ðoÞj jj j; where H11ðoÞj jj j denotes the
magnitude of H11ðoÞ; at 0.55 rad/s for K1 ¼ 1 N s=m; the sensitivity in magnitude to changes in K1

is relatively large, a fact that is verified by the three plots of H11ðoÞj jj j for different stiffness values.
In contrast, the sensitivity in magnitude to changes in K1 is relatively small near the second peak
of H11ðoÞj jj j at 1.45 rad/s. Furthermore, the magnitude of the sensitivity function at the
antiresonance (complex-zero), which is created by the ðK2 � o2M2 þ joC2Þ polynomial in the
numerator of @H11ðoÞ=@K1 in Eq. (8), is small; so there is practically no change in H11ðoÞj jj j near
0.8 rad/s.

2.3. Derivation for third and higher d.o.f. systems

The s.d.o.f. and two-d.o.f. systems discussed in Sections 2.1 and 2.2 both generated embedded
sensitivity functions that described how changes in system parameters caused the system FRFs to
change given only the system input–output/FRF measurements. The sensitivity functions become
more complicated for three or more d.o.f.s but the derivation is similar.
Consider the linear three-d.o.f. system model shown in Fig. 3, noting that the parameter labels

have been modified relative to those in Figs. 1 and 2 to more explicitly indicate coupling within the
system. In general, Kjk is the stiffness between d.o.f.s k and j; and the viscous damping coefficients
are similarly defined. An index of ‘0’ is used in the stiffness and damping parameters associated
with the boundary condition, K10 and C10; because the coupling in these cases is between ground
and d.o.f. 1. Also note that the mass parameters, Mj0; are all expressed with respect to ground
because the inertial terms are defined with respect to the inertial reference frame.
The sensitivity functions for HjkðoÞ can be found by extending the results for the single and

two-d.o.f. systems. By carrying out the various sensitivity derivations, it can be shown that the
general sensitivity functions of HjkðoÞ with respect to the coupling parameter, Pmn (e.g.,
Mm0;Cmn;Kmn), are computed using the equations

@Hjk

@Kmn

¼ �½HjmðoÞ � HjnðoÞ�½HkmðoÞ � HknðoÞ� with Hj0ðoÞ 	 0;

@Hjk

@Cmn

¼ jo
@Hjk

@Kmn

;

@Hjk

@Mm0
¼ ðjoÞ2

@Hjk

@Km0
: ð10a2cÞ

Ref. [7] gives these expressions in a different form in terms of the system FRF matrix.

2.4. Reformulation for use with operating data

The expressions in Eqs. (10a-c) relate the embedded sensitivity functions to input–output FRF
measurements, which can often be easily measured in the laboratory for subsystems such as the
exhaust system discussed in Section 3. FRFs are, however, difficult to measure in systems with
internal inputs as in the case of rotational imbalance forces in powertrain chassis dynamometer
testing or inputs at the tire patch during road testing. Moreover, operating data are often acquired
in many tests conducted by the automotive and supplier industries, because these data more
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accurately reflect the true dynamic loads and levels to which vehicle systems or subsystems are
exposed. The embedded sensitivity functions in Section 2.3 are reformulated using modal
deflection chains in this section to make use of operating data rather than FRF data.
First, the sensitivity formula in Eq. (10a) can be rewritten in terms of the respective

transmissibility functions and operating responses as follows:

@Hjk

@Kmn

¼ �½HjmðoÞ � HjnðoÞ�½HkmðoÞ � HknðoÞ�

¼ �½Tmj;jðoÞ � Tnj;jðoÞ�½Tmk;kðoÞ � Tnk;kðoÞ�HjjðoÞHqqðoÞ

¼ �
½XmjðoÞ � XnjðoÞ�½XmkðoÞ � XnkðoÞ�

FjðoÞFk oð Þ
; ð11Þ

where

Tmk;kðoÞ ¼
XmðoÞ
XkðoÞ

¼
HmkðoÞFkðoÞ
HkkðoÞFkðoÞ

¼
HmkðoÞ
HkkðoÞ

for input at d:o:f : k;

Tjj;qðoÞ ¼ 1 ¼ Tkk;qðoÞ for all q and Tmk;kðoÞ ¼ 1=Tkm;kðoÞ: ð12Þ

The formulae in Eq. (11) are useful if data are available for two different input d.o.f.s, j and k:
Note that only the numerator in the last line of Eq. (11) is needed when determining the relative
sensitivity of the system to changes in stiffness parameters, Kmn; because the denominator is
common to all of these parameter sensitivities. Although this equation is useful for laboratory
subsystem testing, it is difficult to obtain this type of data in large systems with many components
because inputs at certain d.o.f.s can sometimes not be applied at all or when they are applied do
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not adequately excite all of the components (i.e., inputs are not persistent). In order to overcome
this difficulty, the sensitivity functions in Eq. (11) can be converted into expressions involving only
a single input reference using a transformation based on the modal deflection shapes of the
system.
To that end, note that near each mode of vibration of the system, the following equalities hold

depending on the amplitude of the j and k inputs because no matter which input is applied to the
system, the individual mode shapes are identical whereas the scaling of those modes is different:

XmkðoÞ � XnkðoÞ
XkkðoÞj jj j

¼
XmjðoÞ � XnjðoÞ

XkjðoÞ
�� ���� �� :

XmkðoÞ � XnkðoÞ
XjkðoÞ
�� ���� �� ¼

XmjðoÞ � XnjðoÞ
XjjðoÞ
�� ���� �� : ð13a;bÞ

These relationships are referred to in this paper as modal deflection chains because they provide
a means to transform the embedded sensitivity functions into expressions that are more useful in
practical engineering NVH tests. For example, if Eq. (13a) is substituted into Eq. (11), the
following result is obtained:

@Hjk

@Kmn

¼ �½Tmk;kðoÞ � Tnk;kðoÞ�2 HkkðoÞHjkðoÞ
�� ���� ��: ð14Þ

Thus, the only data needed to compare the effects of various changes in the system stiffness
parameters, Kmn; are the transmissibility measurements between the mth and kth and nth and kth
d.o.f.s due to an input at d.o.f. k: The common factor, HkkðoÞHjkðoÞ; need not be considered in a
relative sensitivity study. For this reason, Eq. (14) is a very useful expression in spite of its
simplicity, as is illustrated below in Section 3.2.

3. Application of embedded sensitivity analysis

An exhaust subsystem is experimentally analyzed in this section using embedded sensitivity
functions. Then a five-d.o.f. simulation example system is analyzed using transmissibility-based
relative embedded sensitivity functions from Eq. (14). The exhaust subsystem under investigation
is shown in Fig. 4(a). Note that the exhaust has been supported with elastic cords to approximate
free–free boundary conditions by isolating the exhaust from the test frame.
Before proceeding to analyze forced response data from the exhaust system, it is worthwhile to

consider the nature of the noise and vibration problem of interest. The first generation design of
this exhaust subsystem, which was installed in a standard compact vehicle model, did not exhibit a
resonance problem in the 300–350Hz range. When the suspension of the standard vehicle system
was modified to produce a sportier model, a vibration problem in the rear floorboard of the newer
model appeared with an accompanying structure-borne noise problem inside the saloon. Because
the noise problem was created by a necessary change to the suspension system, a modification to
the exhaust subsystem was required to mitigate the problem. After several design modifications
were made to the exhaust, a successful design, which involved a flexible Metex joint at the inlet
pipe to the muffler, for removing the vibration problem, was identified. The discussion below is a
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follow-up analysis of that noise and vibration design scenario using embedded sensitivity
functions.

3.1. Exhaust subsystem characteristics

The exhaust subsystem modal characteristics in the frequency range of interest were estimated
using FRF measurements in the three Cartesian co-ordinate directions at ten locations (see Fig. 5)
not including the skewed driving point input location near the forward bracket of the exhaust (see
Fig. 4(b)). A 50 lbf electrodynamic shaker, which was instrumented with a PCB 288D01
impedance head (sensitivity 102.24mV/lbf, 98.36mV/g) for measuring force and acceleration at
the attachment location, was used to excite the exhaust into vibration to simulate the input from
the powertrain, and triaxial accelerometers (PCB model 356A08, sensitivity 92–102mV/g, PCB
model A356B18, sensitivity 907–1042mV/g) were used to measure three axes of acceleration at
each point in Fig. 5. FRFs were computed using a Hanning window with 50% overlap signal
processing, 4096 block size, 2048Hz sampling frequency, and a digital filter with a 800Hz
bandwidth for a 0.5Hz frequency resolution.
FRFs in the x (longitudinal), y (vertical), and z (lateral) Cartesian co-ordinate directions were

estimated for each input–output pair. The magnitude and phase of the H71ðoÞ; H81ðoÞ; H91ðoÞ;
and H101ðoÞ FRFs in the y direction are plotted in Fig. 6. Note the peak in all of the FRFs near
312Hz. The relative deflection mode shape associated with this particular damped modal
frequency is shown in Fig. 7 in all the three directions. These shapes were obtained using the peak-
pick modal parameter estimation method [13] in which the imaginary parts of the associated
FRFs, imag Hn;1ðoÞ; are taken to be the modal deflection coefficients at resonant peaks; this
s.d.o.f. approach was valid near 312Hz because that mode is dominant at that frequency. The first
interesting characteristic to note about this mode shape is that it has contributions from all the
three co-ordinate directions. Second, note that the x direction (longitudinal) mode shape has a
rather large deflection at the input location compared to the other locations, indicating that the
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Fig. 4. (a) Photograph of the exhaust subsystem under investigation supported with elastic cords to approximate free–

free boundary conditions; (b) electrodynamic shaker attached with stinger to the front bracket of the exhaust system in

front of the bellows to simulate input from powertrain.
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bellows, which are compliant in the x direction, isolates the exhaust system in that direction at
that frequency. Third, note that the y direction (vertical) mode shape near 312Hz exhibits a large
relative deflection from the inlet pipe to the muffler across to the outlet pipe. This large torsional
motion suggests that the inlet to the muffler may be a region to modify in order to shift this modal
frequency out of the 300–350Hz frequency range; however, the mode shape alone does not
indicate what the ramifications are at the other frequencies of shifting this mode. In contrast,
embedded sensitivity functions do provide this type of information.
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Fig. 5. Illustration of measurement d.o.f. used in tests on an exhaust subsystem; tri-axial acceleration measurements

were made at each point.
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Fig. 6. Magnitude and phase of y direction frequency response functions: (—) H71ðoÞ; (- - -) H81ðoÞ; (y) H91ðoÞ;
and (-.-) H10;1ðoÞ with a skewed input.
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3.2. Embedded sensitivity analysis with measured FRFS

As was previously mentioned, a relative modal deflection shape in a linear vibrating system
gives a clear indication of whether or not a parameter change (mass, stiffness, damping) to the
system will affect that mode of vibration. In general, a change in the system at a frequency for
which there is large relative motion will produce significant changes at that frequency; however,
there are two important pieces of design information that are not obtained using this modal
approach: (1) the effects on frequencies/modes other than the problem frequencies/modes; (2) the
carry-over effects of lower frequencies on higher frequencies (e.g., static stiffness at the boundary
condition). Embedded sensitivity functions provide these other pieces of information because they
are computed using all of the frequency response data rather than just the data near certain
modes. The baseline and modified exhaust systems are now examined in light of the
experimentally obtained embedded sensitivities to define the most effective changes.
In order to propose a design modification to the exhaust system that would affect the 312Hz

mode, several sets of embedded sensitivity functions were computed and examined. Initially, it
was thought that a change in the stiffness of the bellows could potentially help to shift this mode
out of the 300–350Hz frequency range. The sensitivity function for stiffness changes towards the
front of the exhaust system (path between points 1 and 2 in Fig. 5) was computed using the
formula

@H81

@K12
¼ �½H81ðoÞ � H82ðoÞ�½H11ðoÞ � H12ðoÞ�: ð15Þ
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Note that the FRFs, H81ðoÞ; H11ðoÞ; H12ðoÞ; H82ðoÞ; were measured using modal impact testing
for convenience as were the other FRFs in the sensitivity functions below.
The sensitivity function of the same FRF, H81ðoÞ; to changes in the exhaust system at the inlet

pipe to the muffler (path between points 8 and 9 in Fig. 5) was also computed using the expression

@H81

@K89
¼ �½H88ðoÞ � H89ðoÞ�½H18ðoÞ � H19ðoÞ�: ð16Þ

Both of the stiffness sensitivity functions from Eqs. (15) and (16) are plotted in Fig. 8 for
comparison. Note that although the sensitivity of the FRF to changes in the bellows is relatively
high in the 200–250Hz frequency range, the sensitivity to changes across the bellows near 312Hz
is low. This low sensitivity suggests that changes to the bellows are not the most effective way to
deal with the vibration problem. Furthermore, Fig. 8 indicates that changes to the muffler inlet
pipe are more effective than changes to the bellows at modifying/shifting the resonance near
312Hz for two reasons. First, the magnitude of the sensitivity of H81ðoÞ to K89 is relatively large
at 312Hz, and second, the sensitivity function for changes to the muffler inlet in other frequency
ranges is small compared to the corresponding sensitivity function for the change to the bellows.
In fact, the change near the muffler has its greatest impact on the vibrations at 312Hz whereas the
change in the bellows makes a significant impact at many other frequencies as well; these broad
changes are likely to create new vibration problems at other input frequencies of the powertrain.
These conclusions using embedded sensitivity functions were also confirmed with the

experimentally determined FRFs for the exhaust system with a Metex joint inserted at the inlet

ARTICLE IN PRESS

0 50 100 150 200 250 300 350 400

10-6

10
-5

10-4

10
-3

10-2

10-1

100

101

Frequency [Hz]

S
en

si
tiv

ity
 o

f d
H

81
/d

K
89

 &
 d

H
81

/d
K

12

Fig. 8. Comparison of stiffness sensitivity functions of the exhaust system to changes near the bellows (- - -) and the

inlet muffler pipe (—).

C. Yang et al. / Journal of Sound and Vibration 269 (2004) 1063–10811076



pipe to the muffler (Fig. 9). Fig. 10 for the modified exhaust should be compared with the baseline
FRFs given previously in Fig. 6. Note that the peak in the neighborhood of 312Hz has been
shifted downward in frequency with the addition of the Metex joint. In other words, the vibration
problem was effectively addressed by changing K89:

3.3. Embedded sensitivity analysis with transmissibility functions

The FRFs of the five-d.o.f. system shown in Fig. 11 when excited with an input force at d.o.f. 3
(powertrain) were simulated by inverting the system impedance matrix. The system parameters
used in the frequency domain simulation are given in Table 1. Note that the coupling stiffness and
damping between d.o.f.s 3 and 4 have been removed in this example because original test
observations indicated that the hangers in the exhaust system did not influence the vibration
problem of interest; therefore, the design objective was to determine which of the three coupling
stiffness parameters, K12, K23, and K45, should be modified. In a typical operational experiment,
this vehicle system might be subjected to the powertrain rotating imbalance force, f3ðtÞ; as well as
road inputs, which will be ignored here. When Eq. (14) is used to compute the modal-deflection-
scaled relative embedded sensitivity, ½XmkðoÞ � XnkðoÞ�2 with k ¼ 3; for the three stiffness
elements, K12; K23; and K45; the results in Fig. 12 are obtained.
Note that these relative sensitivity functions indicate which stiffness modification is the most

effective at shifting resonances. For example, the plot in Fig. 12 can be split into three distinct
frequency ranges: the first from 0 to 7.5Hz where K12 is most influential; the second from 7.5 to
12.5Hz where K23 is most influential; and the third from 12.5 to 30Hz where K45 is most
influential. When these relative sensitivity functions are compared with the absolute sensitivity
functions shown in Fig. 13 as computed using Eq. (10a), it is seen that the two results are similar.
In fact, the sensitivity function ratios, which determine the relative effectiveness of one stiffness
change with respect to another, are identical in this example.
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Fig. 9. Photo of inlet pipe of muffler fitted with Metex joint for reducing the exhaust torsional coupling stiffness at that

location to mitigate the vibration problem.
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Fig. 10. Magnitude and phase of y direction FRFs: (—) H71ðoÞ; (- - -) H81ðoÞ; (y) H91ðoÞ; and (-.-) H10;1ðoÞ of the
modified exhaust system with a Metex joint showing suppression of mode in the 300–350Hz range.

Fig. 11. Simplified five-d.o.f. model of a vehicle system with the exhaust subsystem consisting of two lumped masses.

Table 1

System parameters in simplified five-degree-of-freedom vehicle model

System parameters

M1 ¼ 35; M2 ¼ 100; M3 ¼ 110; M4 ¼ 25; and M5 ¼ 30 kg

C1 ¼ 85; C2 ¼ 75; C3 ¼ 105; C4 ¼ 0; C5 ¼ 135; and C6 ¼ 125 N s=m
K1 ¼ 170e3; K2 ¼ 150e3; K3 ¼ 210e3; K4 ¼ 0; K5 ¼ 270e3; and K6 ¼ 250e3 N=m
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Some inconsistencies between the absolute and relative sensitivities have been observed
primarily near anti-resonances and in other frequency ranges for which the modes are coupled
when the d.o.f.s have both serial and parallel coupling because Eq. (14) was obtained using a
modal deflection chain, which is only valid when a single mode is active; therefore, the relative
sensitivity functions will be most accurate near resonances and less accurate near anti-resonances.
Because noise and vibration problems are usually associated with resonant behavior, these
discrepancies in the transmissibility-based sensitivity functions can be ignored in most
applications.
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4. Conclusions

The use of sensitivity analysis in diagnosing system-level vibration phenomena was examined in
this work. A series of vibrating system models were used to derive embedded sensitivity functions
for one, two, and larger degree-of-freedom systems. It was shown that the resulting sensitivity
functions were ‘embedded’ because they do not require explicit knowledge of the mass, damping,
or stiffness properties of a system, only the frequency response functions. The embedded
sensitivity functions were then reformulated in terms of transmissibility functions for multiple
inputs and then a single input using modal deflection chains. Embedded sensitivity functions were
then used to experimentally compare two different design modifications to the bellows and the
muffler inlet of an exhaust subsystem. It was shown that these sensitivity functions indicated
which design modification was most effective at shifting a specific modal frequency and also how
that modification affected the frequency response behavior at frequencies across the entire
frequency range of interest. A five-degree-of-freedom vehicle system model was also used to
demonstrate how the transmissibility-based sensitivity formula could be used in the absence of an
input measurement. The effects of non-linearity on embedded sensitivity models are being
addressed elsewhere by the authors.
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